Аннотация к рабочей программе по Астрономии 11 класс

Учебный предмет «Астрономия» входит в состав предметной области «Естественные науки» и относится к учебным предметам, общим для включения во все учебные планы.

При освоении курса астрономии на уровне среднего общего образования формируется комплекс образовательных результатов: предметных, метапредметных и личностных.

На изучение астрономии отводится 1 час в неделю .

Результаты изучения предмета

ФГОС СОО предъявляет следующие требования к предметным результатам освоения курса астрономии.

Таблица 1

Результаты освоения учебного предмета «Астрономия»

Предметная область «Естественные науки»

- 1. сформированность основ целостной научной картины мира;
- 2. формирование понимания взаимосвязи и взаимозависимости естественных наук;
- 3. сформированность понимания влияния естественных наук на окружающую среду, экономическую, технологическую, социальную и этическую сферы деятельности человека;
- 4. создание условий для развития навыков учебной, проектноисследовательской, творческой деятельности, мотивации обучающихся к саморазвитию;
- 5. сформированность умений анализировать, оценивать, проверять на достоверность и обобщать научную информацию;
- 6. сформированность навыков безопасной работы во время проектно-исследовательской и экспериментальной деятельности, при использовании лабораторного оборудования

Учебный предмет «Астрономия»

Базовый уровень

- 1) сформированность представлений о строении Солнечной системы, эволюции звезд и Вселенной, пространственно-временных масштабах Вселенной;
- 2) понимание сущности наблюдаемых во Вселенной явлений;
- 3) владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- 4) сформированность представлений о значении астрономии в практической деятельности человека и дальнейшем научно-техническом развитии;

5) осознание роли отечественной науки в освоении и использовании космического пространства и развитии международного сотрудничества в этой области.

Требования к предметным результатам освоения курса астрономии содержат лишь обобщенные сведения о содержании образования и формируемых умениях.

(см. таблицу 2).

Таблица 2

Требования к уровню подготовки выпускников по учебному предмету «Астрономия»

Базовый уровень

В результате изучения астрономии на базовом уровне ученик должен:

знать/понимать:

смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;

смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;

смысл физического закона Хаббла;

основные этапы освоения космического пространства;

гипотезы происхождения Солнечной системы;

основные характеристики и строение Солнца, солнечной атмосферы;

размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

уметь:

приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований В астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю; описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, физико-химических характеристик звезд с использованием взаимосвязь "цвет-светимость", физические причины, диаграммы определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;

характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения

расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;

использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук;

оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях"

Содержание учебного предмета на базовом уровне

Учебный предмет «Астрономия» вводится на уровне среднего общего образования в качестве обязательного для изучения.

Содержание представлено следующими основными разделами: Предмет астрономии, Основы практической астрономии, Законы движения небесных тел, Солнечная система, Методы астрономических исследований, Звезды, Наша Галактика — Млечный Путь, Галактики. Строение и эволюция Вселенной.

В таблице 3 представлено содержание учебного предмета «Астрономия».

Таблица 3

Обязательный минимум содержания основных образовательных программ по учебному предмету «Астрономия»

Базовый уровень

Цели изучения учебного предмета и ориентация содержания

Раздел «Предмет астрономии»

Роль астрономии в развитии цивилизации. Эволюция взглядов человека на Вселенную. Геоцентрическая и гелиоцентрическая системы. Особенности методов познания в астрономии. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю.А. Гагарина. Достижения современной космонавтики

Раздел «Основы практической астрономии»

Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездная карта, созвездия, использование компьютерных приложений для отображения звездного неба. Видимая звездная величина. Суточное движение светил. Связь видимого расположения объектов на небе и географических координат наблюдателя. Движение Земли вокруг Солнца. Видимое движение и фазы Луны. Солнечные и лунные затмения. Время и календарь

Раздел «Законы движения небесных тел»

Структура и масштабы Солнечной системы. Конфигурация и условия видимости планет. Методы определения расстояний до тел Солнечной системы и их размеров. Небесная механика. Законы Кеплера. Определение масс небесных тел. Движение искусственных небесных тел

Раздел «Солнечная система»

Происхождение Солнечной системы. Система Земля - Луна. Планеты земной группы. Планеты-гиганты. Спутники и кольца планет. Малые тела Солнечной системы. Астероидная опасность

Раздел «Методы астрономических исследований»

Электромагнитное излучение, космические лучи и гравитационные волны как источник информации о природе и свойствах небесных тел. Наземные и космические телескопы, принцип их работы. Космические аппараты. Спектральный анализ. Эффект Доплера. Закон смещения Вина. Закон Стефана-Больцмана

Раздел «Звезды»

Звезды: основные физико-химические характеристики и их взаимная связь. Разнообразие звездных характеристик и их закономерности. Определение расстояния до звезд, параллакс. Двойные и кратные звезды. Внесолнечные планеты. Проблема существования жизни во Вселенной. Внутреннее строение и источники энергии звезд. Происхождение химических элементов. Переменные и вспыхивающие звезды. Коричневые карлики. Эволюция звезд, ее этапы и конечные стадии.

Строение Солнца, солнечной атмосферы. Проявления солнечной активности: пятна, вспышки, протуберанцы. Периодичность солнечной активности. Роль магнитных полей на Солнце. Солнечно-земные связи

Раздел «Наша Галактика - Млечный Путь»

Состав и структура Галактики. Звездные скопления. Межзвездный газ и пыль. Вращение Галактики. Темная материя

Раздел «Галактики. Строение и эволюция Вселенной»

Открытие других галактик. Многообразие галактик и их основные характеристики. Сверхмассивные черные дыры и активность галактик. Представление о космологии. Красное смещение. Закон Хаббла. Эволюция Вселенной. Большой Взрыв. Реликтовое излучение. Темная энергия